
Proving Sequential Function Chart Programs

Using Timed Automata

Dominique L'Her, Philippe Le Parc, Lionel Marc�e

Universit�e de Bretagne Occidentale, d�epartement d'informatique, �equipe EA 2215,
LIMI (Langages et Interfaces pour Machines Intelligentes),
6 av. V. Le Gorgeu, BP 809, 29285 Brest cedex, France

e-Mail: flher,leparc,marceg@univ-brest.fr

Abstract

Applications described by Sequential Function Chart (SFC) often being critical,
we have investigated the possibilities of program checking. In particular, physical
time can be handled by SFC programs using temporisations, which is why we are
interested in the quantitative temporal properties. We have proposed a modeling of
SFC in timed automata, a formalism which takes time into account. In this mode-
ling, we use the physical constraints of the environment. Veri�cation of properties
can be carried out using the model-checker Kronos. We apply this method to SFC
programs of average size like that of the control part of the production cell Korso.
The size of the programs remains however a limit and we are studying the means
of solving this problem.

Key words: formal methods, checking, timed automata, TCTL logic, Sequential
Function Chart (SFC)

1 Introduction

The control language in which we are interested is Sequential Function Chart 1

(SFC). Developed since 1977, this graphical language is based on the step-
transition model. Through temporisations, it makes it possible to take time
into account. The perfect adaptation of this intuitive and practical language
to the programming of automated systems has been clearly demonstrated. It
is one of the languages de�ned by the IEC1133�3 for the programming of
Programmable Logic Controllers. For these, safety is required ; it is necessary
to make sure that their speci�cations are respected by the program. To carry

1 SFC is the English name of Grafcet

Preprint submitted to Elsevier Preprint 17 January 2000

out these checks, SFC has been modeled in various formalisms equipped with
veri�cation tools.

These modelings have limits: time is not taken into account. But time plays
an important role in the command of many automated systems (for instance
the timeouts) so it is important to treat it. This is why we are interested in
temporized SFC and in its temporal veri�cation.

After having presented the main principles of SFC, we will justify the choice
of the timed automata for the modeling of SFC. Then this modeling will be
described as well as the checks which it makes possible. Finally we will explain
how we take into account the constraints of the physical world and how the
size of the automata can be reduced.

2 SFC

SFC [2] is a chart model of the behaviour of the control parts of an automated
system.

2.1 Structure

The basic graphical elements are (see Figure 1):

� The steps represent the various states of a system. They are symbolized
by squares. The initial steps are represented by double squares. During the
evolution of an SFC program, the steps are either active or inactive ; during
initialization, only the initial steps are active. The set of the active steps
of an SFC program at a given moment de�nes the situation of this SFC
program;

� The transitions are used to control moves from one state to another. They
are represented by a horizontal line and control the evolution from step to
step. They have two values ; they can be validated or not validated. A tran-
sition is validated when all the steps preceding it are active. A receptivity
is associated with each transition, i.e. a boolean function of the inputs and
internal variables of the SFC program, for example step variables which test
if a step is active or not. If a transition is validated and its receptivity has
a value of true, then this transition is �reable.
Among the receptivities, a particular function makes it possible to mea-

sure time: the temporisation. The temporisation t1=Xi=t2 denotes a boolean
condition which takes the value of true if the step i remains active at least t1
units of time and which becomes false t2 units of time after the deactivation

2

of step i. No structural relation is imposed between the use of temporisa-
tion and the step i referred to (in the temporisation t1=Xi, the value of t2
is implicitly 0).

2.2 Behaviour

Two postulates de�ne the conceptual framework in which SFC must evolve:

� Postulate 1: All the events are taken into account as soon as they occur
and for all their incidences.

� Postulate 2: In the SFC model, causality is considered with zero delay-
time.

It should be noted that, as a consequence of these postulates, the SFC model
is sensitive to any external event, whatever its time of occurrence. All changes
in the external environment must be taken into account, and the induced
reaction must be calculated with zero delay-time.

The following �ve rules de�ne the evolution of an SFC program:

� Rule 1: At the beginning, only the initial steps are active.
� Rule 2: A transition is validated if all the preceding steps are active. A
transition is �reable when it is enabled and its receptivity has the value of
true.

� Rule 3: A �reable transition is immediately �red. The immediately fol-
lowing steps are then activated and the immediately preceding steps are
deactivated. Activations and deactivations are performed simultaneously.

� Rule 4: If, in an SFC program, several transitions are simultaneously �re-
able, they are �red simultaneously.

� Rule 5: If a step is simultaneously activated and deactivated, it remains
active. The priority is given to activation.

2.3 Interpretation

The behaviour of an SFC program is described by the �ve rules of evolution.
Those are supplemented by interpretation algorithms. The main interpreta-
tions are named No Search for Stability (NSS) and Search for Stability (SS).

� NSS Interpretation: In the case of the NSS interpretation, an evolutio-
nary step corresponds to a simple evolution, that is the simultaneous �ring of
all the �reable transitions. Carrying out a simple evolution step corresponds
to the acquisition of inputs, to the computation of the new situation and to

3

its output towards the external world.
� SS Interpretation: In the case of the SS interpretation, an evolutionary
step corresponds to an iterated evolution, that is, a simple evolution with ac-
quisition of the inputs followed by a continuation, possibly empty, of simple
evolutions without acquisition of inputs, until a stable situation is obtained.
A situation is stable when no transition is �reable without new input being
taken. A cycle of instability is a sequence of simple evolutions not leading
to a stable situation.

Despite rules and interpretations, ambiguities still persist in the description
of SFC programs. For the following modelings, the choices which were made
are detailed in [11].

Fig. 1. An SFC program.

The SFC program of Figure 1 will illustrate the various points of our talk. At
the beginning, steps 0 and 10 are active and it is supposed that input A is
false. Transitions 0 and 2 are thus validated but not �reable. Three evolutions
are then possible:

� Input A becomes true before 10 units of time. In this case, transition 0 is
�reable. Its �ring causes the deactivation of step 0 and the activation of
step 1. The situation f 1,10 g is reached, applying rule 3.

� 10 units of time run out without A becoming true. Transition 2 is �red, the
situation f 0,11,12 g is reached, applying rule 3.

� Input A becomes true exactly 10 units of time after the activation of step
10. Transitions 0 and 2 are simultaneously �red. The situation reached is
f 1,11,12 g, applying rules 3 and 4.

The SFC program then continues to evolve from the current situation.

4

3 Checking by using timed automata

"Synchronous" languages have been proposed to answer the problems of safe
programming. The basic assumption of these languages stipulates that the
outputs be considered simultaneously with the inputs that generate them.
The SFC language also makes this assumption. In the case of the languages
Signal [8] and Lustre [6], the data
ow approach still accentuates the proximity
between SFC and these languages. On the other hand, if the de�nition of SFC
is purely textual and does not provide clear semantics,whereas languages such
as Signal and Lustre have mathematical semantics. Therefore the modeling of
SFC in such languages [9] gives us a means of clarifying the semantic choices for
SFC. This also allows us to build a simulator and to check properties. However,
for checking quantitative temporal properties, this approach is not suitable.
Indeed, the discrete representation of time induces an explosion of the number
of states of the graph representing all possible runs, so that veri�cations cannot
be performed in a short time.

In order to solve this problem of explosion, [5] proposes an approximative
method based on convex polyhedrons. Veri�cations are not performed on the
whole graph but on an abstraction.

We have chosen another approach which takes physical time into account.
Thus we have studied timed Petri nets [4], timed transition models (TTM)
[13], timed automata [7] [12] and hybrid systems [1]. Timed automata give
us a good compromise between the power of expression and the possibility of
veri�cation.

3.1 Timed Automata

Informally, timed automata are automata extended by a set of real variables,
called clocks, the values of which grow uniformly with the passage of time
and which can be set to zero. Constraints relating to these clocks are associa-
ted with the states and transitions.These timing constraints de�ne the time
during which the system can remain in a state and the possibility of �ring a
transition. Timed automata thus allow a compact modeling of time. Moreover,
veri�cations using model-checking are possible on timed automata. This is why
we have chosen them to model SFC.

3.1.1 De�nition

A timed automaton is a quintuple (S,sinit,H;A; Inv) where

5

� S is a �nite set of control locations where sinit is the initial location.
� H is a �nite set of clocks, real variables taking their values in the set of
positive real numbers.

� A is a �nite set of edges. Each edge is de�ned by a quintuple (ss, , l, R,
sb) where ss and sb are the source and target locations respectively of the
edge, is a timing constraint which must be satis�ed by the clocks to �re
the edge, l is a label and R is the set of the clocks to be set to zero when

the edge is �red. The edge (ss, , l, R, sb) is also noted ss
 ;l;R
�! sb.

� Inv: S! (H) associates with each location a time-progress condition called
invariant. While the clocks satisfy the invariant, the system may stay in the
location.

At the beginning, the system is at the initial location with all the clocks having
the value 0.

3.1.2 Semantics

The timed automaton semantics is given by <Q, !, (s0; v0)> a transition
system where Q is the set of states, ! the set of transitions and (s0; v0) the
initial state.

� A state (s; v) is a location s and a valuation v of all the clocks.
� The initial state is the pair (s0; v0) where s0 is the initial location and v0 is
the valuation which associates 0 with all the clocks.

� From the state (ss,v), the transition (ss, �, l, R, sb) can be �red if the clock
valuation satis�es �. We note v[R] the clock valuation after the �ring of the
transition which associates 0 with the clocks in R. The clocks in R are set
to zero, the values of others clocks remaining unchanged. This behaviour is
expressed by the following rule:

rule 1 :
s
�;a;R
�! s0 ^ �(v)

(s; v)
a
�! (s0; v[R])

While the constraint associated with a state is true, the system is allowed
stay in the state. This property leads to the next rule:

rule 2 :
8t 2 [v; v+ d]Inv(s; t)

(s; v)
d
�! (s; v + d)

At any state, the system can evolve either by a discrete state change corres-
ponding to a move through an edge that may change the location and reset
some of the clocks, or by a continuous state change due to the progress of time
at a location.

6

3.2 Modeling

First we present the modeling [11] in a general way. Then we specify what
each element of a timed automaton represents. A location represents an SFC
situation, a set of values of inputs and temporisations. The transitions corres-
pond to a change of the inputs or toan evolution of time inducing a change of
the temporisation values. If these modi�cations imply the �ring of some tran-
sitions in the SFC program, the target location represents the situation after
evolution. The invariants of the states and the temporal constraints express
the constraints resulting from temporisations.

3.2.1 Location

In the general case, a location of a timed automaton is de�ned by a situation
of the SFC program, a valuation of the boolean input variables and the values
of the temporisations appearing in the SFC program. Several locations of the
automaton can correspond to a single situation of the SFC program.

For the SFC program of Figure 1, if we suppose that input A is false at the
beginning, the initial location is f0,10,A, tempo1, tempo2, tempo3, tempo4g
where tempo1, tempo2, tempo3 and tempo4 denote the temporisations 10/X10,
15/X1, 20/X12 and 10/X12 respectively.

3.2.2 Clock

A clock is associated with each step appearing in a temporisation. The value of
a clock is the time since when the associated step has been active or inactive.

For the SFC program of Figure 1, 3 clocks are de�ned: h10 for the step 10
appearing in tempo1, h1 for the step 1 appearing in tempo2, and h12 for the
step 12 appearing in tempo3 and in tempo4.

3.2.3 Invariant associated with a location

The invariant associated with a location expresses the constraint which the
clocks have to satisfy, so that no temporisation changes its value in the lo-
cation. First of all, we look for the relevant clocks in a location, i.e. those
associated with a step, being referred to by a temporisation which can change
values. They correspond to the clocks which satisfy one of the two conditions:

� The clock is associated with step i, step i is active and there is a false-value
temporisation referring to step i. This temporisation may become true.

7

� The clock is associated with step i, step i is inactive and there is a true-value
temporisation referring to step i. This temporisation may become false.

The constraint associated with a clock satisfying the �rst condition is:

hi � minj t1j for f tempoj=t1j/Xi/t2j with tempoj false g.

The constraint associated with a clock satisfying the second condition is writ-
ten:

hi � minj t2j for f tempoj=t1j/Xi/t2j with tempoj true g.

Finally, the constraint associated with a location is
true if the location does not comprise any relevant clock or,
the conjunction of the constraints associated with the relevant clocks other-
wise.

For instance in the initial node, only the clock h1 is relevant because only the
temporisation tempo1 may change. The invariant is written h10 � 10.

3.2.4 Transition

The edges of the timed automata correspond to a change of the inputs and/or
an evolution of time bringing a modi�cation of the values of temporisations.
An input may change in any location. Only temporisations corresponding to
the relevant clocks in the location may change.

� The timing constraint associated with a transition denotes whether one
or more temporisations change. When the source location does not include
any relevant clock, the transition is not constrained temporally: its timing
constraint is \true". On the other hand if the source location includes one or
more relevant clocks, then the timing constraint is a conjunction of proposi-
tions hi=ti and hj<tj. The �rst form corresponds to a change of the tempori-
sation while the second denotes that the temporisation remains unchanged.

� The clocks, of which steps were activated (deactivated) during the transi-
tion, are set to zero in such a way that the value of the clock, is always the
time since when the step has been active (inactive). For instance (Figure
2), h1 is set to zero on the �rst transition because the step 1 is activated.

� From a given situation and inputs, edges related to inputs, temporisations
and edges related to steps, the new situation is obtained by a simultaneous
�ring of all the �reable transitions and the new value of temporisations is
computed. The target location is then de�ned by the situation reached,
the inputs and temporisations being updated.

8

The transitions of the timed automaton do not inevitably correspond to the
�ring of SFC program transitions.

From the initial location f0,10,A, tempo1, tempo2,tempo3,tempo4g, three tran-
sitions are possible according to whether the input A and/or the temporisation
tempo1 become true. In Figure 2, these transitions are described.

h12 � 10

h1 � 15 ^ h12 � 10

h10 � 10 ^ h1 � 15

h10 � 10

1,10,A,tempo1,tempo2,tempo3,tempo4

0,11,12,A,tempo1,tempo2,tempo3,tempo4

1,11,12,A,tempo1,tempo2,tempo3,tempo4

0,10,A,tempo1,tempo2,tempo3,tempo4
h10 = 10; resetfh10, h12g

h10 < 10; resetfh1g

h10 = 10; resetfh10, h1, h12g

Fig. 2. First step of the construction of the timed automaton for the SFC program
of Fig. 1.

3.2.5 Construction

The construction of the timed automaton starts with the de�nition of the
initial location. Then this location is treated, i.e. its invariant and the tran-
sitions leaving it are computed. Then new locations are in general built. The
construction continues, as long as not all the locations have been treated. Since
the number of possible locations is �nite the algorithm ends.

The complete automaton representing the SFC program of the Figure 1 has 3
clocks, 14 locations and 58 transitions in the case of the SS interpretation.

3.3 Checking

We model the SFC program with a timed automaton in order to check pro-
perties using the veri�cation tool Kronos [3].

The properties expressed on the SFC level, must be translated into Timed
Computation Tree Logic (TCTL) to be checked by the model-checker Kronos.
This translation is an important stage of the checking. It requires a thorough
knowledge of logic and often requires very precise expression of the respective
property.

9

3.3.1 TCTL

TCTL [7] is a temporal logic which extends arborescent logic CTL by in-
troducing a global variable: time. As a tree logic, TCTL uses symbols that
concern at the same time the set of all possible executions (9: there is an
execution, 8: for all the executions) and the set of execution states (�: there
is a state, �: for all the states, U : until a state). In order to introduce time
explicitly into the syntax, the scope of the temporal operators is time-limited.
Thus, the formula 8��4p intuitively means that, for all the executions of the
system, proposition p is true for all the states until the fourth time unit.

3.3.2 Some properties

TCTL, although reserved to express quantitative temporal properties, makes
it possible to write the usual qualitative temporal properties.

Thus to check that a situation is a deadlock, various formulae can be de�ned.
The following formula makes it possible to know if the situation S is reachable
and is always a deadlock: (init) 9} S) ^ (init) 8� (S)8� S)).

Without being always a deadlock, a situation may be locked in some cases:
init) 9} (S ^ (S) 8� S)).

We show that the situation f0,11,14g is not a deadlock but on the other hand,
once the steps 11 and 14 are reached, they remain in�nitely active.

On timed automata, we can also check quantitative temporal properties:

� We can check the duration of activation of a step: does step i remain active
more than (at least) t units of time? For instance, we check that step 1 could
remain active more than 15 units of time by showing that the following
formula is true:
init)9} (e0 1 ^ (e0 1) e0 1 9U>15 e0 1)) where e0 1 is the proposition
associated with the location when the step 1 is active.

� We can also study the time which separates two activations of distinct
situations S1 and S2. Thus to show that between the activation of S1 and
the activation of S2, the maximum duration is lower than t, the following
formula must be false:
init) 9} (S1 ^ (S1) (: S2 9U>t : S2))).

Using the Kronos tool, we succeed in checking properties on the timed au-
tomata resulting from the SFC programs. By this method, we can check SFC
programs of more important size and which have more temporisations. More-
over delays are not a limitation any more. Indeed, the complexity of the algo-
rithm of veri�cation is independent of delays.

10

4 Applications

We have studied the production cell Korso [10]. The programming of the
control of this application is achieved very easily in an SFC program. For the
checking, we have to solve two problems: taking environment into account and
reducing size of the automata. We present the solutions we have found and
the tools we have developped.

4.1 Taking environment into account

50

50:cap2 and X33

51

52 pr_up S

51:10/X51

54:cap1

{ press loaded in median position }

{ arm cleared from press }

53

52:cap3

 pr_up R

55:X41 or X42 or X43

56 pr_up S

54

53:2/X53

 pr_down S

55 pr_down R

57

56:cap2

 pr_up R

57:1/X57

{ press high }

{ blank processed }

{ press low }

{ press unloaded }

{ press in median position }

{ press ready for blank }

Fig. 3. SFC program of the press.

To explain the problem, we take an element of the operative part of Korso,
the press as an example. The press consists of a horizontal plate which can
move vertically. The SFC program of the press is given in Figure 3. In steps
50 and 51, the press waits in the median position (cap2) until a metal blank
is loaded by the robot (step 33 of the robot is then reached). Then it goes up
(step 52) to the high position (cap3) and the metal blank is worked (step 53)
during 2 units of time. Then the press goes down (step 54) to the low position
(cap1) where it waits (step 55) to be discharged by the robot (step 41 or 42 or
43 of the robot). Finally it goes up (steps 56 and 57) until reaching its median
initial position again. The process can then start again.

This SFC program is synchronized with the robot by the step variables X33,
X41, X42 and X43. To study it separately, we let go these synchronizations
by replacing "X33" by the variable vX33 and " X41 or X42 or X43 " by the

11

variable vX4. These variables vX33 and vX4 evolve freely.

We build the corresponding timed automaton. It has 1296 locations, 262 896
transitions and 3 clocks. It is too large to be checked by the Kronos tool which
accepts only automata having fewer than 65000 transitions.

Moreover, the automaton has locations which represent the press in the high
and low positions simultaneously. Under standard running, these locations
have no sense ; they do not ful�ll the constraints of the environment. This is
why the construction of the automaton was then modi�ed so that only the
locations satisfying the constraints of the environment are considered. During
our study, we encountered three kinds of constraints, according to how they
relate to the locations and/or the transitions:

� Only one of the sensors cap1, cap2, cap3 may be true at one moment because
the press is in a single position. A stronger constraint can be expressed if
inputs c12 and c23 (representing the position between top and medium and
the position between medium and low) are introduced. In this case, it is
necessary that there should be one and only one of the sensors (cap1, c12,
cap2, c23, cap3) true at a given moment. The locations which do not satisfy
this constraint are removed.

� The changes of value of the sensors are constrained to pass from the low
position to the high position via a medium position. The transitions which
do not satisfy this constraint are removed.

� The constraints handling, at the same time, the locations and the transitions
express the links which exist between the actions and the sensors. Thus
when the action pr up is done, the low position is no longer reachable. In
the same way when the action pr down proceeds, reaching the high position
is no longer possible.

We are interested in two properties of the press:

� The formula expressing that the press should not be moved to the low
position if the sensor cap1 is true, is written: init) 8� : (pr down

and cap1)

� In the same way, to show that the press should not be moved to the high
position if the sensor cap3 is true, it should be shown that the following
formula is true:
init) 8� : (pr up and cap3)

By introducing the inputs c12 and c23 and by considering only the �rst two
kinds of constraints, the automaton built has 922 locations and 57606 transi-
tions. On this automaton, the two properties are false.

Moreover while inserting the constraints resulting from the actions, the au-

12

tomaton then has 314 locations and 13670 transitions.

The �rst property is always false, which is due to the relaxation of synchro-
nizations which produces an instability. Thus step 55 is not always activated ;
it follows that the action \stop to go down" is not always carried out when
cap1 is true.

The second property is true showing that the environment has been taken into
account su�ciently.

Working on a more realistic representation, we can check more properties.
Taking into account the environment makes it possible to decrease the size of
the automaton but does not solve all the problems of size.

4.2 Reduction of the size

During our veri�cations, we wish to know which situations are reachable and
which values can take input in these situations. The given modeling makes
it possible to answer these questions. It is however possible to consider other
modelings solving this problem. If a boolean formula could be associated with
a location, the most compact modeling would consist of a timed automaton
reduced to the graph of the situations. As only conjunctions of the proposi-
tional variables can be associated with the locations, we can not obtain the
graph of the situations. Even so, we propose a smaller modeling than the ini-
tial modeling.

In a location, we do not denote any more the value of each input but only the
value of the important inputs. For a particular situation, an input is important
if a modi�cation of its value can induce an evolution of the SFC program.
In the timed automaton, a transition is de�ned only if it corresponds to a
modi�cation of the important inputs or a modi�cation of temporisations.

Once the initial situation obtained, we determine the important inputs for
this situation. The values of these important inputs are then �xed. The initial
location is completely de�ned. For example, for the SFC program of Figure 4
and NSS interpretation, the only important input for the step 0 is a. As a is
initially false, the initial location is written (0,a, b̂, ĉ) where ê means that the
value of the input e is not of importance for the current situation.

Then, as long as there remains a state to be treated, we construct the whole
automaton by the following operations: for each temporal event, for each pos-
sible combination of the important inputs of this state, we study the target
situation. If an input is important for the target location, its value must be

13

a

b

c

not a

0

1

2

3

1, âbĉ

3, ab̂ĉ 3, ab̂ĉ

0, ab̂ĉ

" a " a

b

" b
" b

2, âb̂c 2, âb̂c
c

" c" c

" a

a

1, âbĉ

Fig. 4. SFC program and corresponding timed automaton for the new modeling in
NSS interpretation (the timing constraints are not written).

�xed. Two cases can occur:

� It is important in the source location, its value is then perfectly de�ned. This
is the case for the input b for the evolution from (1, â, b, ĉ) corresponding
to #b.

� It is not important in the source location. The target location is divided
into two sets of locations, one representing the true input, the other the
false input. For example, the virtual location (2, â, b, ĉ) is reachable from
the location (1,â, b, ĉ). This location, where c is an important input, is
divided into two: (2,â, b̂, c) and (2, â, b̂, c).

If an input is not important in the target location, then if it is important in
the source location, its value is free. For example, the input b of the virtual
location (2, â, b, ĉ) is relaxed for example into (2, â, b̂, c).

In this modeling, a location represents several locations of the preceding mod-
eling, in the same way the number of transitions is reduced. Thus for the
example and NSS interpretation, the timed automaton has 22 locations and
176 transitions in the �rst modeling and 7 locations and 19 transitions for the
new modeling. For SS interpretation, the timed automaton has 16 locations
and 112 transitions for the �rst modeling and 11 location and 66 transitions
for the new modeling. The reduction is more sensitive for the NSS interpre-
tation than the SS interpretation ; indeed, the number of signi�cant inputs
relative to a situation is smaller in NSS than in SS.

This modeling makes it possible to considerably decrease the size of the timed
automata. On the other hand, it is di�cult to take environment into account

14

with this modeling. Indeed, as it is not possible to consider boolean formulas
at the level of the locations, the constrained inputs must be considered im-
portant in all situations. Therefore in the worst case, that is to say when all
the inputs are constrained, no pro�t will be obtained from new modeling.

We have also studied techniques permitting the decrease of the size of the
systems to be checked: the composition and the abstraction. These techniques
are powerful. However, for the timed systems, their study is relatively recent
and few results have been obtained. Their application to the checking of SFC
programs is not immediate and still requires basic work on the timed systems.

4.3 Tools

To facilitate the design and the checking, various tools have been built such
an editor of SFC progams (see Figure 1), a simulator, the translators SFC
programs-timed automata as well as an interface of veri�cation.

The interface makes it possible to choose the parameters of the checking and
to execute the chain of tools which produce the result of the checking.

It was developed in Tcl/Tk and it is composed of a control panel (see Figure 5).
From this one, the user can choose the various parameters of the veri�cation
as follows.

� The SFC program.
� The property which he wants to check. The properties are expressed in a
user-friendly way. They are reachable in a tree structure.

� Options. The choice of interpretation (NSS or SS) is possible. We can more-
over specify if the simultaneous modi�cations of inputs are authorized or
not. The possibility of taking the environment into account was also given.
For each type of constraint de�ned in the paragraph 4.1, a window of data
entry has been de�ned.

When the checking is started, the interface takes care of several tasks:

� construction of the TCTL formula corresponding to the property,
� construction of the timed automaton corresponding to the SFC program
� call of the tool of veri�cation

On the Figure 5, the result of the veri�cation of a property on the SFC is
shown.

15

Fig. 5. Interface of veri�cation.

5 Conclusion

In this work we show that it is possible to take time into account in mode-
ling of SFC programs and to check their qualitative or quantitative temporal
properties.

In modeling with the synchronous languages, we represent discrete time. Du-
ring the checking, this modeling leads to a combinatorial explosion of the
number of states, each instant being represented by a state.

We then have turned to timed automata. This formalism takes into account
continuous time in its de�nition, owing to real variables called clocks. With
each step i referred in a temporisation t1=Xi=t2, we associate a clock. This
computes the time for which the step has been active or inactive. On a timed
automaton resulting from this modeling, we could check temporal properties
such accessibility in a minimum or maximum time, or the durations of mini-
mum activity and maximum. For this veri�cation, the delays are no longer a
limitation.

On the other hand, the size of the automata remains a barrier to the checking.
An automaton should not have more than 65000 transitions, so that Kronos
can treat it. Unfortunately, some of the automata generated from the SFC
programs can have more than 100000 transitions. In order to solve this pro-
blem, several solutions have been investigated. Taking the environment at the
level of the states and the transitions into account enables us to decrease the
size of the automata considerably. In the same way, a proposed new modeling

16

makes it possible to reduce the number of states and transitions from the
automata generated. However to increase the size of the SFC programs that
can be treated, e�orts must continue in these directions as in the study of the
veri�cation techniques of composition and abstraction.

To ensure more safety of SFC programs, checking only does not seem to be
su�cient. In parallel, we think that a methodology should be developed ma-
king it possible to avoid design errors. This methodology could perhaps also
support the building of more easily veri�able SFC programs. Furthermore it
seems important to us to confront the models and theories already developed
with the industrial applications.

6 Acknowledgements

We wish to thank the anonymous referee who helped us to improve our pidgin
English.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3{34, 1994.

[2] N. Bouteille, P. Brard, G. Colombari, N. Cotaina, and D. Richet. Le
GRAFCET. "C�epadu�es �Edition", Toulouse, France, 1992.

[3] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur,
T. Henzinger, and E.D. Sontag, editors, DIMACS Workshop on Veri�cation
and Control of Hybrid Systems, pages 208{219. LNCS 1066, Springer-Verlag,
1995.

[4] C. Ghezzi, D. Mandrioli, S. Morasca, and M Pezz�e. A uni�ed high-level
Petri net formalism for time-critical systems. IEEE Transactions On Software
Engineering, 17(2):160{172, February 1991.

[5] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis,
editor, 5th Conference on Computer-Aided Veri�cation, pages 333{346. LNCS
697, Springer-Verlag, 1993.

[6] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-
time system by means of the synchronous data-
ow language Lustre. IEEE
Transactions on Software Engineering, 18(9):785{793, September 1992.

[7] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking
for real-time systems. Information and Computation, 111(2):193{244, 1994.

17

[8] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming
real time applications with Signal. Proceedings of the IEEE, 79(9):1321{1336,
1991.

[9] P. Le Parc, D. L'Her, J.L. Scharbarg, and L. Marc�e. Le Grafcet revisit�e �a l'aide
d'un langage synchrone
ot de donn�ees. Technique et Science Informatiques,
17(1):63{86, January 1998.

[10] C. Lewerentz and T. Lindner. Case study 'production cell' : A comparative
study in formal speci�cation and veri�cation. In C. Lewerentz and T. Lindner,
editors, Formal Development of Reactive Systems : Case Study Production
Cell, pages 1{54. LNCS 891, Springer-Verlag, 1995.

[11] D. L'Her. Mod�elisation du Grafcet temporis�e et v�eri�cation de propri�et�es
temporelles. PhD thesis, Universit�e de Rennes 1 (France), September 1997.

[12] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time speci�cations into
extended automata. IEEE Transaction on Software Engineering. Special Issue
on Real-Time Systems, 18(9):794{804, 1992.

[13] J.S. Ostro�. Automated Veri�cation of Timed Transition Models. In G. Goos
and J. Hartmanis, editors, Workshop on Automatic Veri�cation Methods for
Finite State Systems, pages 247{256. LNCS 407, Springer-Verlag, 1989.

18

