
Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 1

Petri Nets

1. Basic Petri Net Model

2. Properties and Analysis of Petri Nets

3. Extended Petri Net Models

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 2

Petri Nets

☞ Systems are specified as a directed bipartite graph.
The two kinds of nodes in the graph:

1. Places: they hold the distributed state of the system expressed
by the presence/absence of tokens in the places.

2. Transitions: denote the activity in the system

☞ The state of the system: captured by the marking of the places
(number of tokens in each place)

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 3

Petri Nets (cont’d)

☞ The dynamic evolution of the system: determined by the firing
process of transitions.

• A transition may fire whenever all its predecessor places are
marked.

• If a transition fires it removes a token from each predecessor
place and adds a token to each successor place.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 4

Petri Net Example

A producer and a consumer process communicating through a buffer:

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

B B B

B B B

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 5

Petri Net Example (cont’d)

Continuation from previous slide:

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

B B B

B B B

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 6

Petri Net Example (cont’d)

Continuation from previous slide:

☞ Notice that the buffer is considered to be infinite (tokens can
accumulate in place B).

prod.

send

rec.

cons.

prod.

send

rec.

cons.

prod.

send

rec.

cons.

B B B

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 7

Petri Net Example (cont’d)

Here we have the same model as on the previous slides, but with
limited buffer. The buffer size is three (number of initial tokens in B’)

Total number of tokens in B and B’ is constant.

prod.

send

rec.

cons.

B

B’

prod.

send

rec.

cons.

B

B’

prod.

send

rec.

cons.

B

B’

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 8

Some Features and Applications of P etri Nets

• Intuitive.
Easy to express concurrency, synchronisation, nondeterminism.

Nondeterminism is an important difference between Petri nets and
dataflow!

• As an uninterpreted model, Petri Nets can be used for several,
very different classes of problems.

- Uninterpreted model: nothing has to be specified related to the
particular activities associated to the transitions.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 9

Some Features and Applications of Petri Nets (cont’d)

• Petri Nets have been intensively used for modeling and analysis of
industrial production systems, information systems, but also

- Computer architectures

- Operating systems

- Concurrent programs

- Distributed systems

- Hardware systems

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 10

Proper ties and Anal ysis of P etri Nets

☞ Several properties of the system can be analysed using Petri nets:

• Boundedness: the number of tokens in a certain place does not
exceed a given limit.
If this limit is 1, the property is sometimes called safeness.

- You can check that available resources are not exceeded.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 11

Properties and Analysis of Petri Nets (cont’d)

• Liveness:
- A transition t is called live if for every possible marking there ex-

ists a chance for that transition to become enabled.
The whole net is live, if all its transitions are live.

- liveness is important in order to check that a system is not
deadlocked.

• Reachability: given a current marking M of the net, and another
marking M’, does there exist a sequence of transitions by which M’
can be obtained?

- You can check that a certain desired state (marking) is reached.
- You can check that a certain undesired state is never reached.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 12

Properties and Analysis of Petri Nets (cont’d)

Mathematical tools are available for analysis of Petri Nets.

The properties discussed above can be formally verified.

☞ Petri nets (like dataflow systems) are asynchronous concurrent.

• Events can happen at any time.

• There exists a partial order of events:

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 13

Extended P etri Net Models
Basic Petri Net models have a limited expressive power.

☞ Timed Petri Nets
- Transitions have associated times (time intervals)
- Tokens are carrying time stamps.

• With timed Petri nets we can model the timing aspects

☞ Coloured Petri Nets
- Tokens have associated values
- Transitions have associated functions

• Coloured Petri Nets are similar to dataflow models (but also
capture nondeterminism!).

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 14

Extended Petri Net Models (cont’d)

[1, 5] [2, 7]

[2, 2]

[2, 4][1, 3]

(5, 0)

x y

2×x y+3

y+x

x y

x y
x>0

[1, 5] [2, 7]

[2, 2]

[2, 4][1, 3]

x y

2×x y+3

y+x

x y

x y
x>0

[1, 5] [2, 7]

[2, 2]

[2, 4][1, 3]

x y

2×x y+3

y+x

x y

x y
x>0

(2, 0)

(10,2) (5, 4)(10,2)

x-3 y+2 x-3 y+2 x-3 y+2

value time-stamp

(2, 0)

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 15

Extended Petri Net Models (cont’d)

[1, 5] [2, 7]

[2, 2]

[2, 4][1, 3]

x y

2×x y+3

y+x

x y

x y
x>0

[1, 5] [2, 7]

[2, 2]

[2, 4][1, 3]

x y

2×x y+3

y+x

x y

x y
x>0

(15,6)

x-3 y+2 x-3 y+2

(17,8)

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 16

Extended Petri Net Models (cont’d)

• Extended Petri Nets have a larger expressive power then classical
Petri Nets.

Analysis is more complex; the formal analysis of properties can take
unacceptably large amounts of time (memory).

• Simulation of the Petri Net can be used in order to verify the
system and to estimate performance

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 17

Summar y

• Petri Nets are a mixture of dataflow and state-based model.
Places hold the distributed state of the system (represented by the
marking); transitions denote the activity of the system.

• Petri nets elegantly capture concurrency, synchronisation, and
nondeterminism.

• A large class of problems can be solved using Petri Net modelling;
system properties like boundedness, liveness, and reachability
can be formally analysed.

• Petri nets, like dataflow, are asynchronous, concurrent models.
Events can happen at any time; there exists a partial order of
events.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 18

Summary (cont’d)

• Basic Petri Nets are limited in their expressive power
- in timed Petri Nets an explicit notion of time has been

introduced;
- in coloured Petri nets tokens have associated values.

• Formal reasoning about extended Petri Net models is very difficult
because of complexity issues.
Simulation of the models is often used for system validation.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 19

Discrete Event Models

1. What Is a Dicrete Event Model?

2. Disctere Event Simulation

3. Efficiency of Discrete Event Simulation

4. Potential Ambiguities in Discrete Event Simulation

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 20

Discrete Event Models

• The system is a collection of processes that respond to events.

• Each event carries a time-stamp indicating the time at which the
event occurs.

• Time-stamps are totally ordered.

• A Discrete Event (DE) simulator maintains a global event queue
sorted by the time-stamps. The simulator also keeps a single
global time.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 21

Discrete Event Sim ulator

time1

time2

timei

ev_name
value

ev_name
value

ev_name
value

ev_name
value

ev_name
value

ev_name
value

Global clock

.
S1<=5 after 2s
.
wait on S3

ProcessP1

.
wait on S1
.
S3 <= ...

ProcessP2

S1
5

This event will be
generated and placed
into the event queue
at time tglobal_clock + 2

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 22

Discrete Event Simulator (cont’d)

Advance global clock to tcurrent, the time-stamp
of the earliest event(s) in the event queue.

Update the values of all events having time-stamp = tcurrent.

Activate and run all processes which are sensible to
the updated events; each process will eventually reach
a wait for a certain event and enter a wait state.

The activated processes have generated new events;
place these events at their right place in the event queue.

Anyevents
left?

Yes

No

Simulation
done!

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 23

Discrete Event Sim ulation

☞ The discrete event model has been mainly used for system
simulation.

• Several languages have been developed for system modeling
based on the discrete event model. Most well known:

- VHDL, Verilog (both used for hardware modeling)

☞ Efficient way to simulate distributed systems.
In general, efficient for large systems with autonomous
components, with relatively large idle times. Systems with non-
regular, possibly long times between different activities.

Why is this the case?

Because DE simulation will only consider the particular times when
a change in the system (an event) occurs. This is opposed to, for
example, cycle-based models, where all clock-ticks are considered.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 24

Discrete Event Simulation (cont’d)

☞ Efficiency related problems:

• Keeping the sorted event-queue is time-consuming.

• As the activity of the simulated system increases (a lot of
events at a very high number of time moments have to be
considered) the overhead becomes high ⇒ simulation is slow.

☞ Event driven models are primarily employed for simulation.
• Functional verification
• Performance evaluation

☞ Both synthesis and formal verification are very difficult (complex)
with DE models.

- The classical trade-off between expressive power and the
possibility of formal reasoning and efficient synthesis.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 25

A Problem with Discrete Event Sim ulation

Simultaneous events resulted from 0 delay components:

CA B
t

t

CA B
t

t

CA B
t

CA B
t

Alte
rn

at
ive

 1

C

is
inv

ok
ed

fir
st

an
d

th
en

B

Alternative 2

B
is invoked first

and then C

C is first reacting to the event
from A and then to that of B

C is reacting to both events

delay=0

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 26

A Problem with Discrete Event Simulation (cont’d)

Such an ambiguity creates problems. For example, different simulators
will produce different output for the same model with identical inputs.

☞ A possible solution (used, for example, in VHDL):
Each instant of “real time” is virtually broken into a potentially infinite
number of totally ordered “delta steps”.

A zero delay process will introduce a “delta delay” on the event.
The input and output event are at the same “real time”, but a partial
order is introduced.

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 27

A Problem with Discrete Event Simulation (cont’d)

CA B
t

t

CA B
t

CA B

CA B
t

Alte
rn

at
ive

 1

C

is
inv

ok
ed

fir
st

an
d

th
en

B

Alternative 2

B
is invoked first

and then C

C is first reacting to the event
from A and then to that of B

t+∆

t+∆

C is first reacting to the event
from A and then to that of B

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 28

A Problem with Discrete Event Simulation (cont’d)

☞ This also solves the problem of zero-delay feedback loops.
(delay on all three components is 0, see also FSMs, Fö6 - slide 18)

Not only non-determinism is a problem here, but the output on C
can, in general, not be determined.

Some systems reject such models.

If delta delays are introduced (like with VHDL) a deterministic
simulation is possible.

CA B
t

t

Petru Eles, IDA, LiTH

System Design&Methodologies Fö 5- 29

Summary

• Discrete Event is a very powerful modelling technique, in terms of
expressive power.
Models are concurrent and asynchronous.
The timing model is also very general. Delays on computation or
communication can be arbitrary.

• We pay for the large expressive power by the reduced potential of
formal reasoning and efficient synthesis.
Discrete event models are mainly used for simulation.

• Simulation is based on maintaining a unique, sorted event queue.
This can create problems with simulation efficiency for large
system models.

• In order to avoid problems with zero delay computations, “delta
delays” are used (e.g. in VHDL).

