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ABSTRACT

The aim of this paper is to study the validation of both the
behavioral model and the implementation program of an
automated system. To clarify our approach, we use a small
production line whose control algorithm is built using Signal
Interpreted Petri Nets, validated using Model-checking
techniques and translated into a Sequential Function Charts
(SFC) implementation program. This program is then vali-
dated anew. Using this example, we show the utility of those
two validation steps before the final implementation of the
program on a Programmable Logic Controller (PLC).

1 INTRODUCTION

In this paper, a flexible manufacturing system is used to mo-
tivate validation of both the behavioral model and the im-
plementation program of a controller. To achieve that, a be-
havioral model of the controller is designed using Signal In-
terpreted Petri Nets (SIPN) and validated using Model-
Checking. Once the behavioral model is correct, it is trans-
lated into an implementation program written in Sequential
Function Charts (SFC). This implementation program is vali-
dated anew in order to assert that the properties of the con-
troller have been preserved during the translation.

2 WORKING EXAMPLE

2.1 Presentation and requirements
We use the example of a flexible manufacturing system
(Figure 1) provided as a benchmark available under [1]. This
machining line consists of three stations: a drilling machine,
a vertical milling machine (with tool changer), and a horizon-
tal milling machine. Each station has an independent con-
veyor.
The module contains 15 input signals (11 limit switches and
4 infrared sensors) and 15 output signals (4 reversible mo-
tors and 7 non-reversible motors). The input switches and
sensors are normally closed contacts.
To design the control algorithm of the manufacturing line,
we study the “complex operations” scenario [2] given as a

timing chart. Using this scenario, the three machines of the
line are working.

Figure 1. Flexible Manufacturing System.

2.2 Expected behavioral properties
The example was delivered without the properties the con-
troller has to fulfil. Hence properties have been deduced
from the timing chart given in [2] using the method devel-
oped in [3]. This method allows to find properties by exa m-
ining under which input conditions an output is set to 0 or
set to 1. An easy way to use this method is to collect the
variables in a table as shown in Table 1.

V
er

tic
al

 m
ill

 a
t

lo
w

e
r 

p
o

si
tio

n
(I

05
 =

 0
)

V
er

tic
al

 m
ill

 a
t

up
pe

r 
po

si
tio

n
(I

06
 =

 0
)

T
o

o
l 

in
 p

o
si

tio
n

(I
07

 =
 0

)

P
a

rt
 a

t 
m

ill
in

g
p

o
si

tio
n

(I
11

 =
 0

)

Vertical Mill Conveyor ON
(O04 = 1)

0

Vertical Mill Moving UP
(O05 = 1)

0 1

Vertical Mill Moving DOWN
(O06 = 1) 0 1 1

Vertical Mill Motor ON
(O07 = 1) 1 1

Tool charger rotates
(O10 = 1)

1 0 0 1

Table 1. I/O properties.

For example, the following property can be written:
Prop1: the mill moves up (O05=1) if it is not yet at upper po-
sition (I05=1) and if there is a tool in position (I07=0).
The method has been extended in order to write properties
that concern only output signals. This extension consists of
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scanning which output signals can not be simultaneously
true or false. In Table 2, “X” stands for incompatible actions
and “N” for needed outputs.
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Vertical Mill Conveyor ON
(O04 = 1)

X X

Vertical Mill Moving UP
(O05 = 1)

X X X

Vertical Mill Moving DOWN
(O06 = 1)

X X N X

Vertical Mill Motor ON
(O07 = 1)

X

Tool changer rotates
(O10 = 1)

X X X

Table 2. Output properties.

As an example, the following properties can be extracted:
Prop2: the mill can never been moved up (O05=1) and down
(O06=1) simultaneously.
Prop3: the milling motor must always be on (O07=1) while
the mill is moved down (O06=1).
This example shows that the table is symmetric for exclusive
outputs (X) but not for needed ones. Taking into account
the example, this can be explained by the fact that the milling
motor must be on while the mill moves down, whereas mo v-
ing the mill down is not necessary to turn on the milling mo-
tor.

3 DESIGN USING SIGNAL INTERPRETED PETRI NETS

3.1 Formal Definition
In this work, timed Signal Interpreted Petri Nets (tSIPN) are
used to design the specification model. In [4], a tSIPN is de-
fine as a 10-tuple SIPN = ( P, T, F, m0, I, O, ö, ù, Ù, τ) with:
(P, T, F, m0) an ordinary PN with places P, transitions T,

arcs F, and binary initial marking m0, with |P|,|T|,|F|>0,
I a set of logical input signals with |I| > 0
O a set of logical output signals with I ∩ O = ∅, |O| > 0
ö a mapping associating every transition ti ∈ T with a fir-

ing condition ö(ti) = Boolean function in I
ù a mapping associating every place pi ∈ P  with an output

ù(pi) ∈ (0, 1, -)|O|
, where (-) means ‘don’t care’.

Ù the output function combines the output ù of all marked
places Ù: m → (0, 1, -, c)|O|. The combined output can be
zero (0), one (1), undefined (-) or contradictory (c).

τ a mapping associating every arc fi that is an input arc to
a transition fi ∈ (P × T) ∩ F with a time delay τi ∈ R0

+.
With fi = (pj, tk), τi is the time that a token has at least to
stay in pj before it can be removed by the firing of tk.

The dynamic Behavior of a tSIPN is given by the firing pro-
cess defined by four rules:
1. A transition is enabled, if all its pre-places are marked, in

the case of timed arcs marked for at least the specified
delay time τ, and all its post-places are unmarked (safe
enabling rule).

2. A transition fires immediately, if it is enabled and its fir-
ing condition is fulfilled.

3. All transitions that can fire and are not in conflict with
other transitions fire simultaneously.

4. The firing process is iterated until a stable marking is
reached (i.e. until no transition can fire anymore). Since
firing of a transition is supposed to take no time, iterative
firing is interpreted as simultaneous. This also means the
hypothesis that a change of input signal values can not
occur during the firing process. That is verified with re-
active systems.

After a new stable marking is reached, the output signals are
recalculated by applying Ù to the marking.
The firing process can be represented by a flow chart like
the one presented in Figure 2.

Read input signals

Compute firable
transitions

Fire transitions AND
Set new marking

Compute output
signals

Stability check

Non stable
marking

Stable
marking

Figure 2. Evolution algorithm of an SIPN.

3.2 Hierarchical SIPN
Nevertheless, for real-world programs, SIPN controllers tend
to be large and difficult to handle like for most visual lan-
guages. In most cases, certain subnets can be identified
which realize certain subtasks and are only active in specific
situations. The complete SIPN can, therefore, be replaced by
an abstract SIPN where single places are used instead of
these subnets. The subnets are subordinated to these hier-
archical places and can in turn contain hierarchical places
and so on. Hence a hierarchical SIPN so called SIPNH re-
sults. Hierarchy does not only enhance the readability of
SIPNs. It is also a valuable means for top-down design of
SIPN controllers: Instead of trying to create a single, large
net, a programmer can start with an abstract SIPN which is
then refined step by step.
The subnets in an SIPNH contain an input and an output
place. The input place is given a token at the same time as
the corresponding hierarchical place is marked. The token
from the hierarchical place can only be removed together
with the token on the output place. With this construction
and an additional passivity constraint, it is assured, that the
subnet is only influencing the process while it is activated
by the hierarchical place. For a formal definition see [4].
In the following section, a place having a subnet is drawn
with a dashed line.
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3.3 Design of the specification model
To design the specification model of the flexible manufac-
turing line, timed hierarchical SIPN are used. More precisely,
the model stands out of three hierarchical levels with six
subnets.
The highest level (Figure 3) is used to synchronize the three
machines and their associated conveyors.

P1
Drill Press

P2
Vertical Mill

P3
Horizontal Mill

P0

T001
Line is ON
NOT I00

T002

Figure 3. Level 1 of the SIPN specification model.

In the second level, the three machines are described in a
quite similar same way. In the upper part, a new part is
waited for and in the lower part, the part is machined. For ex-
ample, the SIPN (Figure 4) is the model of the second level
for the vertical milling machine.

P209
Milling cycle

T203
New part
NOT I11

P206
Tool 1

P208
Tool 3

P207
Tool 2

P215
End of milling

P202
Waiting part has gone

P203
Waiting for a new part

T210

T207

T206

T201
Mill at upper position
NOT I05

T202
No part at milling position
I11

No new part
I11

T=10s

P204
VM conv ON
O04=1

P201
Move the mill up
O02=1

T204

Figure 4. SIPN-level 2 of the vertical milling machine.

In the third and last level, the actions on each machine are
described in a linear sequence. Figure 5 illustrates that for
the vertical milling machine.
The complete behavioral model stands out of three hierar-
chical levels, 55 places and 40 transitions.

P2098

P2093
Move the VM DOWN
O06=1

T2090

T2093
VM at lower position
NOT I06

P2092
Milling ON
O07=1

P2090

P2094
Move the VM UP
O05=1

T2094
VM at upper position
NOT I05

P2096

T2096
No tool charged
I07

P2095
VM rotation ON
O10=1

P2097

T2097
Tool charged
NOT I07

Figure 5. SIPN-level 3 of the vertical milling machine.

4 VALIDATION

4.1 Definition
Validation is often confused with verification. Therefore, let
us remind the definitions given by Boehm in [5]:

“Verification: am I building the product right ?”
“Validation: am I building the right product ?”

Hence, according to [6], the verification is the proof that that
the internal semantics of a model is correct independently of
the modeled system whereas the validation determines if the
model agrees with the designer’s purpose.
In this contribution, we will focus on validation. Neverthe-
less, verification will be performed on each model before its
validation.
The method used to perform validation is symbolic model-
checking [7].

4.2 Model-checking
Model-Checking is a technique in which a finite state model
of the system is built and the expected properties (specifica-
tions of the behavior) of the system are checked on this
model [8]. The system is modeled as a finite state automa-
ton, the evolution of this automaton is given in an algorithm
and the properties are expressed in a temporal logic. A
search procedure (exhaustive state space search) is then
used to check whether the expected properties are verified
on the finite state transition system or not. Figure 6 shows
the model-checking procedure.
In symbolic model-checking, the state space of the finite
state automaton is not explicitly built and Binary Decision
Diagrams (BDD) are used to represent the system's states.
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In this work, the symbolic model-checker Cadence SMV [9]
is used to perform validation.

verdict (yes / no) and diagnosis (counterexample as a trace)

� Formalization

� Verification: 
Does A running
on E  hold ϕ ?

Model-checking tool

A

State Automaton

Specification model
or

Implementation program
Properties to prove

ϕ

Temporal Logic
Formulae

Evolution rules
or

PLC cycle

Evolution
algorithm

E

Figure 6. Model-checking process.

4.3 Temporal logic formulas
The assertions written in section 2 must be translated in a
temporal logic [7] to be used in Cadence SMV. A variable
eoc (end of cycle) [10] corresponding to the observable
states of the system has been defined. This variable is de-
fined using the evolution algorithm E (Figure 6). This algo-
rithm is:
• The interpretation of the SIPN firing rules (Figure 2) and

eoc represents: “A stable marking has been reached”.
• The cyclic behavior of the Programmable Logic Con-

troller (PLC) shown in Figure 10. In this case, eoc
means: “The PLC cycle has terminated”.

As an example of translation, the first two properties written
in section 2 become:

Prop1: SPEC AG (eoc & (O05=1) → (I05 & ~I07)) ;
That can be reinterpreted in: It is always true (AG) that the
mill moves up (O05=1) if (→) it is not at upper position (I05)
and if there is a tool in position (~I07).

Prop2 : SPEC AG ~(eoc & (O05=1) & (O06=1)) ;
Reinterpretation: It is always true (AG) that we do not (~)
have simultaneously (&) the drill moving up (O05=1) and
down (O06=1).

4.4 Validation of the specification model

4.4.1 Coding of the SIPN specification model
Before we can use the symbolic model checker Cadence
SMV, we have to translate the structure and the dynamic
behavior of the control algorithm (A and E in Figure 6). This
coding is performed using the method presented in [11].

4.4.2 Validation
After have made sure that the designed SIPN fulfils the
standard SIPN properties (verification), the validation of the
problem specific properties has been performed.
The properties extracted from the analysis of the output
variables have been validated at the first validation pass.
Properties involving input and output variables are mostly
not supported by the model because of the non-model

based approach [12]. In this approach, no assumptions
about the real behavior of the plant are made. Hence every
combination of input signals is possible. As an example,
Figure 7 shows the result of the validation of Prop1.

Figure 7. SMV diagnosis for the validation of Prop1 (SIPN).

We can notice that the sensor signal I07 becomes 1 whereas
the tool changer has not been moved. That is not a design
failure but it is due to the non-model based approach. To
make the model support the property, we formulate an as-
sumption which is: When the sensor signal I07 has value 0
(tool in position), it remains 0 until the tool changer rotates.
This can be written in TL:

Tool: assert G ((I07=0) → (I07=0) U (O07=1)) ;
Using this assumption on the input variables, the property
is supported by the model.
Formulating such assumptions, the approach is called con-
strained based. This approach must be handled carefully
because every assumption made about the behavior of the
plant has to be realistic and must not hide real behavioral
possibilities. However, using this approach, the validation
did not show other failures.
The designed formal model of the controller has been vali-
dated but an SIPN can not be implemented directly into a
PLC. That means that a translation of the former correctly
designed SIPN into an implementation language is neces-
sary. This also means that a new formalism with other evolu-
tion rules will be used and that part of the information could
get lost. In order to make sure that the properties remain un-
changed during the translation, a new step of validation will
be performed.

5 IMPLEMENTATION OF THE CONTROL PLAN

To implement the control plan, 3 of the five languages de-
fined in the IEC 61131-3 standard [13] are used. After a brief
presentation of the standard, the implementation program
design is presented in more details before it is validated.
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5.1 The IEC 61131-3 standard
The IEC 61131-3 standard defines the syntax and, for a
lesser part, the semantics of four programming languages for
PLC, as well as a structuring one (Sequential Function
Chart).
The four programming languages are Ladder Diagram, Func-
tion Block Diagram (graphic programming languages), Struc-
tured Text and Instruction List (textual ones). The Ladder
Diagram language (LD), based on relay ladder logic dia-
grams, permits the description of Boolean functions. In the
Function Block Diagram language (FBD), the programming
features are represented as graphic blocks. The Structured
Text language (ST), close to Pascal, allows sequential, con-
ditional and loop statements. The Instruction List (IL) is an
assembly code-like language.
The fifth language is defined in order to structure the inter-
nal organization of PLC programs or function blocks. This
graphic language called Sequential Function Chart (SFC) is
inspired by Grafcet [14] and is an extended state machine
that contains primitives to describe sequential, parallel and
alternative behaviors. It enables the partitioning of a PLC
program (or function block) into a set of steps and transi-
tions interconnected by directed links. Each step is associ-
ated to a set of actions and each transition is associated to a
transition condition.
Because of this step and transition definition, a quite easy
translation from the SIPN specification model can be done
into this programming language. However there are some
major differences that have to be considered [15]:
• In SFC there is, by definition, no transient state. The ac-

tivity of a step is always held up for at least one PLC
cycle.

• In SFC post-steps of a transition are not checked in the
firing rule. A step that is already activated can be acti-
vated again.

• There is a structural restriction in SFC allowing only
one initial step.

Furthermore, the standard defines action qualifiers such as
stored, restored, delayed, allowing the replacement of inter-
preted parallelism by qualified actions. To create the imple-
mentation program, following qualifiers have been used: N
(Non-stored action), S (Set or Stored action) and R (Reset a
former stored action).

5.2 Design of the implementation program
The implementation program is a translation of the former
designed Signal Interpreted Petri Nets specification model
using SFC to structure the program, LD and FBD to express
the transition conditions.
The second hierarchical level of the SIPN model is devel-
oped in the main SFC. The machining cycles are described in
three other SFC and are called by the main SFC. The differ-
ent SFC exchange signals to evolve. Furthermore some
places of the Interpreted Petri Nets have been suppressed
by the use of Functions Blocks to express edges and time

delays as shown in Figure 8 and Figure 9. It can also be no-
ticed that parallelism has been replaced by qualified actions.

S200

S201

S202

S203

N O05

N O04

NOT I05

S2004.X

S2000.X

F_TRIGI11

TONS201.X

10s

S204

S205

S2004.X

S2000.X

S206

S207

S2004.X

S2000.X

S208

TRUE

S0

NOT I00

Figure 8. Implementation program (main SFC).

S2000

S2001

S2002

S2003

S2004

S O07

NOT I06

F_TRIGI07

N O06

N O05

NOT I05

R O07

N O10

S202.X

S206.X

S204.X

S203.X

S207.X

S205.X

Figure 9. Implementation program (vertical milling machine
SFC).

The complete implementation program stands out of 4 SFC
with 41 steps, 42 transitions, 4 LD and 7 FBD used to ex-
press transition conditions.
To perform validation on this program, we have to describe
its structure and behavior in order to use Cadence SMV.

5.3 Validation
Before the SFC program can be validated, we have to de-
scribe the cyclic evolution (E) of the PLC in which it will be
implemented. This cyclic behavior [16] can be modeled by
Figure 10.
After having made sure that the designed SFC was semanti-
cally correct (verification), we performed validation. We no-
ticed that property 1 was no longer supported by the pro-
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gram. The trace delivered by Cadence SMV is shown in
Figure 11.

Input reading

Evaluation of edges
Evolution of timers

Computation of steps variables

Compute output signals

Figure 10. PLC cyclic model

Figure 11. SMV diagnosis for the validation of Prop1 (SFC)

This property is not validated by the implementation pro-
gram because even if the mill is already at the upper position
(I05=0), the motor will be set to 1 when the step S200 is
reached. This is due to the fact that there are no transient
steps in SFC. Actually every step is active at least one cycle
time and the associated outputs are emitted. The solution
consists of introducing a new step and a new transition in
order to pass over the step S200 when the mill is already at
the upper position.
This example shows that, even if the SFC is a simple transla-
tion of the former validated SIPN, errors can occur because
of the different dynamics of the models.

6 CONCLUSION

In this paper, a formal model of the controller of the Flexible
Manufacturing System has been designed using Signal In-
terpreted Petri Nets. This formal description has been vali-
dated via model-checking and then translated into a pro-
gramming language of the IEC61131. Due to its graphical
representation, Sequential Function Chart has been chosen.
This program has been validated anew to make sure that the
former validated behavior has not been modified during the
translation phase.
This example shows that formal methods like validation are
well suited for the design of control algorithms. But due to
the different languages, and therefore the different seman-

tics, used along the design process, a new step of validation
has to be performed after each translation of the controller.
None of these validation steps can be omitted if we want to
be sure that What You Prove is What You Get.
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