
A Highly Interactive Discrete Event Simulator
designed for Systems in Logistics

A. Graber, D.Mutaaga, Dr. H. Ulrich, D. Schweizer * , A. Zimmermann
Institute for Operations Research

* Computer Engineering and Networks Laboratory
Swiss Federal Institute of Technology Zurich

F. Bolay,
Alcatel-STR, Au-Wädenswil, Switzerland

Abstract

Simulation is considered to be a method to improve
planning and control efficiency in the field of logistics. In
our view no existing simulation tool meets the basic
requirements sufficiently. We therefore developed a new
simulator with the following characteristics:

• Simulation principles: General purpose discrete event
simulator.

• Modeling basis: Meta model comprising few specific
basic elements to be used according to a well-defined
syntactical structure.

• Modeling principle: A separation of material flow and
information flow is enforced. Logically consistent hierar-
chical structures are provided.

• Implementation: Realization in an object-oriented
language (Smalltalk-80)

• Working environment: Highly interactive modeling
process to be performed in a man-machine-dialogue.
Flexible visualization of the simulation model and the
simulation results are provided.

A brief summary of our experiences in simulation is
given. Of our approach to develop an adequate simulator,
we describe some basic elements as well as one specific
application.

1 . Introduction

Mastering the complexity of large dynamic systems is a
major challenge in the management of today's economy.
Generally simulation is considered as a promising
approach to improve planning and to control efficiency.
But, in spite of single successful examples, simulation is
not yet the state of the art for the planning and control
task. The main reason is still the cost-efficiency relation
for simulation projects which only in rare cases proves
favorable.

The tendency over the last years has been to develop
simulation tools with increasing specialization to specific
application fields. But if the simulation tools are not
explicitly conceived for the problem to be solved -- this is
unfortunately the normal case --, the results are in general
unsatisfactory. There is a lack of flexibility within these

tools and the run-time performance is often not accept-
able.

The requirements for a simulation tool depend on the
specific field of application . The latter can be
characterized as follows:

Dynamic aspects in logistics, e.g., material flow in
production or transportation networks. The analysis is
concentrated on the decision problems represented on an
abstraction level that does not consider a visual
representation of the real process or lay-out details.

For this application we aim to develop a simulator which
efficiently supports the modeling task and allows a
simulation analysis for a problem dimension relevant in
practice with an attractive run-time performance.

We are not aware of such a simulator, however we found a
number of attractive elements in different existing tools
on which we could base our approach. Worth mentioning
are the simple abstract simulation elements of simulation
languages as in SIMAN and SLAM or interactive
facilities of a Petri Net Simulator as in PACE [4], [5].

2 . Requirements

The requirements for a simulator envisaged here focus on
two major topics:

1. The power of the m o d e l i n g b a s i s to support
the model building process.

2. The quality of the w o r k i n g e n v i r o n m e n t
on computers which has to enhance programming and the
subsequent simulation analysis.

• The m o d e l i n g b a s i s should comprise of a
formalism providing elements conceived especially for our
problem field. These elements are to be designed as
simple as possible. The user can either modify these ele-
ments in their behavior or join them to more complex
modules, according to his requirements.

• The user should not be limited in his choice of an
adequate abstraction level. He even should be enabled to
alter this level during the modeling process. A top-down
approach with a stepwise increase in degree of detail is
efficiently supported.

2

• Debugging facilities as a fast detection and indication
of logical programming errors as well as immediate
visualization of the model in the programming process
facilitate the modeling task.

• As to the w o r k i n g e n v i r o n m e n t , the
simulator should be conceived for a hardware platform
equivalent to standard modern work-stations. There, a
highly interactive modeling in a man-machine dialogue
can be established.

• The simulator should be designed to cope with
system dimensions relevant to the often huge real world
problems. As to the run-time performance, the results
should be attainable within a 'reasonable time'.
• An easy interpretation of the results should be enabled
through the availability of utilities for statistical
purposes, supported by graphical representation facilities.

3 . Experiences with some Widely Used

Methods

3.1. Overview

Today's modeling and simulation techniques
-- and the associated tools -- are still in a very unsatisfac-
tory intermediate state [11]. The huge number of available
tools is an indicator, for a not yet established
methodology.

One can see the following two main categories (taking
into account, that not all methodologies fit into this
scheme):

• General purpose simulators that are based on systems
like GPSS, SLAM, SIMAN and Simscript.

• Module oriented, application specific simulators like
e.g.: Simple++, Dosimis, Automod II, STEM, and many
others. The roots of those tools are mainly a parametric
system, combined with new graphical oriented SW user-
interface.

The general purpose systems contain -- due to their age --
a huge amount of knowledge in modeling and develop-
ment of efficient algorithms for the implementation of the
simulator. Due to their SW-technology, they are presently
used less in the academic world.

We summarize the relation between those two categories
in the following figure:

Complexity of the problem

Time to develop
 the model.

1b)

2)
1a)

Real world problemsDemo problems

1a)

Fig. 1: Development - time versus problem - complexity.

1) Development time with module oriented simulators.

1a) Practical behavior. A large amount of time is
used to bend the modules for the needed functionality.
Real world problems are often not feasible.

1b) The module fits exactly the needs. This behavior
is seldomly reached.

2) General purpose simulators tend to have a longer
introduction phase, but are more suitable to tackle
large scale problems.

Due to the fact, that a module oriented simulator always
lags behind the recent problems, the end users in practice
are faced with characteristics 1a (after they expected to
have bought the powerful tool of characteristics 1b).

Run-time performance:
The typically available computer system for solving
logistics problems is a high end PC or a workstation.
Fig. 1 does not make any statement about the run-time
efficiency of the two main classes of simulators.
Even considering the increasing power of computers, one
will always be faced with the problem of performance.

3 . 2 . Criteria for judging different approaches

Our judgment is based on large scale systems like the
entire cargo traffic of Swiss railways' network [12] or the
flow of material and information of three coupled fully
automatic factories in the chemical industry.

In such projects one needs flexibility:

1. to find the right level of abstraction (which might
change during the life-cycle of the model),

2. to include external control systems,

3. to enter original data from MRP systems,

4. to get simulation results fast. One run of significant
length must have a run-time clearly below 30
minutes, otherwise we loose the benefits of repetitive
simulation runs.

To achieve good results, it has to be possible to perform
many repetitive runs

3

3.3. General Purpose Simulators

Benefits:

• Elementary medium level simulation instructions,
without limitations in adapting the abstraction level to
the actual problem.

• Through the possibility of including procedural code
(C, Pascal, ..) one is enabled to implement complex
control systems and procedures for input and output data
in any format.

• General purpose simulators can adapt their abstraction
level to the needs of the user and herewith help to save
computing power.

• As to run-time, this approach is very efficient
(simulation 50 - 100 times faster than in reality).

Problems:

For the implementation of a model, this approach
definitely needs skilled people with expert knowledge in
computer science. The initial learning time cannot be
neglected.

3.4. Module oriented Simulation

Benefits:

• Very short initial learning time, with immediate
results in the first stage of partial modeling.

• The graphical user interface -- often combined with an
on-line animation -- is highly motivating for novice
users.

Problems:

• As the project evolves from the demo model to the
final model, special unforeseen situations may consume a
huge amount of time (which is the normal situation in
many projects).

• Due to the given set of modules one is forced to
model in detail, whereas a higher abstraction level is
indicated. This tends to consume an unacceptable amount
of cpu-time (simulation is slower than reality) and there-
fore frequent repetitive simulation runs are hardly
possible.

3.5. Petri nets

Our first approach to develop a general purpose simulator,
was based on the interactive Petri net tool PACE [4], [5]
for modeling logistics systems in an industrial environ-
ment. Below we shall outline some benefits and problems
we encountered while using this tool.

Benefits:

• Petri nets [6], [7], [8] provide a sound mathematical
foundation for modeling and simulation.

• The basic semantics of Petri nets is extremely easy to
understand and their representation as bipartite graphs
leads to an immediate intuitive understanding of what is
happening on the level of particular nodes such as places
and transitions.

Problems:

• Although Petri nets have a simple semantics, it is
not easy to understand a large system represented in terms
of Petri nets. Two projects1)2) led to the insight that the
abstraction mechanisms provided by hierarchical Petri nets
were too weak to represent the structure of the systems
appropriately.

• "Hierarchical Petri nets" as they were provided by the
tool allow to represent parts of a large net as a single box.
Herewith you get a different view of the net with arbitrary
chosen "black boxes" that do not behave as a place or a
transition of a Petri net and therefore get only a meaning
if you know exactly what's happening inside the boxes.
Hence there is no real abstraction mechanism.

• Based on the wish to get more modeling power by
abstraction, there was an attempt to provide a set of
powerful subnets (modules) that may be used to compose
arbitrary models [9]. This approach was dismissed for the
following reasons:

- The semantics of the new modules is only defined
through their internal structure (and of course
informally through the names of its interfaces and its
own name). Thus the behavior of a module cannot
really be understood without a detailed knowledge of
its internal structure, and therefore, the benefit of the
essentially simple semantics of Petri nets gets lost.

- With the creation of new modules one virtually intro-
duces a new semantic. Additional consistency checks
on these new modules may lead to a simulation -
overhead of up to 65% [9].

4 . Our Simulation Concept

4.1. Simulation Methodology

In our context a simulation analysis comprises problem
solving and model development as two highly correlated
processes. Therefore, an iterative development process
seems to be the most appropriate procedure. We therefore
propose the following steps:

1. Decomposition of the system into single processes
on an abstraction level as high as possible, in a way that
the relevant features of the system can be represented
adequately.

1) Control system for HYBRID III automotive research

platform
2) Production planning for printed circuit boards

4

2. Run the simulation and use the results to find
potentially critical parts of the system, that are not
covered sufficiently by the chosen abstraction level.

3. Refine the processes identified in step 2 to a more
detailed abstraction level.

See also [10].

This approach leads only to good results if an expert,
familiar with our class of systems is in charge of the
modeling task. He should be able to estimate the most
relevant system parameters. A successful application of
this methodology requires a highly interactive modeling
environment, providing immediately understandable re-
sults (graphics) in a short time.

4.2. The Meta - Model

The term Meta - Model designates a formalism suitable
for the description of a model of a real world system.
The use of Petri nets for the description and simulation of
logistics systems inspired us to provide a model based on
a sound formal description, omitting the already
mentioned drawbacks of Petri nets. The definition of the
basic elements of our meta - model is based on our ex-
periences in the use of established simulation languages
like SIMAN and SLAM.

4 . 2 . 1 . Design Guidelines

In our approach we tried to meet the following
requirements:

• The meta - model has to provide a syntactical struc-
ture for the description of logistics systems we deal with.
Although the nodes in our net should provide a higher
level of abstraction than places and transitions in a Petri
net, the number of different types of nodes should be as
small as possible. People familiar with queueing systems
should be able to understand their meaning intuitively.
The syntax is to be checked incrementally during the
editing session.

• A simple graphical representation of all possible
language constructs has to exist.

• The meta - model itself should provide hierarchical
structures in the sense that a node of level n + 1 contains
a subnet of level n. Every node that doesn't contain a
subnet has a default behavior. To encourage a stepwise
refinement process, subsequent modifications of a node by
describing its behavior with a subnet does not change its
interfaces. The hierarchy relation H means that if a H b
holds, then the behavior of a node a depends on the
behavior of a node b: N designates the set of all nodes; Si
the set of all nodes on level i.

∀a ∈ N:a ∈Si ∧ i > 0 ⇒
∃b ∈ N:aHb ∧ b ∈Sj ∧ 0 ≤ j < i

There is a subset S0 (level 0) of the set of all nodes N

such that

∀a ∈ N:a ∈S0 ⇒ ¬ ∃b ∈ N:aHb()
The relation H is transitive, irreflexive and anti
symmetric. See also [1], [2].

• Considering that a simulation model must be able to
reflect the real structure of a system, it should provide
also an appropriate abstraction for the edges of the net.
Here we distinguish at least two different types of edges in
the net describing the material and the information flow
respectively [3].

• The proposed meta - model should provide
mechanisms flexible enough to describe any real structure
of a queueing system in a consistent way. Features to
extend the functionality of particular nodes are provided.
The syntax of the meta - model should not be affected by
these extensions. This behavioral description on a rather
low level of abstraction could be made in terms of Petri
nets, state machines or any suitable language.

• The information flow has to be separated strictly from
the material flow. This offers the possibility to run a
model under different control strategies.

4 . 2 . 2 . Syntactical Structure and Semantics

In the following section, we present a brief description of
the basic elements of the meta - model followed by a
short formal definition of the syntactical structure (only
the static parts, i.e., without resource allocation). A
complete formal description may be obtained from the
authors.

Every model will be represented as a directed graph with
three different types of nodes and two types of edges.

We propose the following types of nodes:

• Stations may be hierarchical structures in the sense
mentioned above (a station may contain a subnet, which
defines its behavior). They model an arbitrary process.
Every station has a default behavior to allow a simulation
run at any time. Stations can always generate, duplicate,
split, modify and remove entities.

• Logic elements. These elements can inspect other
nodes in the net as well as modify their state. All of these
interactions are well defined through the definition of
channels enabling information exchanges (information
flow). The behavior of these logic elements may be speci-
fied in a formalism mentioned in the previous section.

• Queues. The queueing rules are configurable either
statically or dynamically through commands received from
connected logic elements mentioned above.

One may consider these nodes as a set of abstract data
types. Their internal behavior could be defined in terms of
an algebraic specification.

Furthermore we have chosen the following types of edges:

• material flow channels allow entities to move
from one node to another along the edge.

5

• information flow channels allow state
inspection or modification between connected elements in
a well-defined manner. No movement of entities is
allowed over these edges.

In addition there are resources which can be allocated
dynamically. They contain information about their
availability and their behavior.

5 . The Implementation

5 . 1 . Object Oriented Approach

We implemented our tool in Smalltalk-80 because:

• Object-Oriented Programming is suitable for developing
simulations for all kinds of applications, using all kinds
of conceptual frameworks [13].

• In an object oriented environment it is easier to
implement abstract modeling elements. "World is
composed of 'objects'" [14].

• The sending of messages to objects corresponds to the
concept of event-oriented simulation.

• Two major demands of the user to a simulation
program are the ease in its use and an all-powerful
functionality. With Object-Oriented Programming it is
possible to aim at both goals.

• In particular we have chosen Smalltalk-80 because of
the very comfortable programming environment.

5 . 2 . Implementation of the Meta - Model

When constructing models we use an interactive graphical
interface, where elements are added to the network by
clicking on icons and dragging them. Connecting two ele-
ments defines a material or an information flow between
them. When adding a new connection, the program checks
automatically all syntactic rules, so that the user gets
aware of errors while modeling.
For each station, a subnet can be defined. It will appear in
a separate window.
We distinguish between functionality and graphical
information by dividing the implementation model into
two levels: the simulation model, with the data specific
for the simulation, and graphical models, with the infor-
mation for displaying the network.

Views / Controllers

C C C C C C

GM2GM1

Simulation Model

GM3

Fig. 2: Implementation model consisting of the simulation model
and three different graphical models GM1, GM2, GM3.

• The simulation model contains the functional
description of the process to be modeled. It consists of the
main network, subnets and specific resources for the
model. A special list contains the descriptions of each
type of entity.

• The graphical model contains information about the
appearance and location of the nodes as well as methods to
manipulate them. Several graphical models can be
superposed on the main network or any of its subnets.

• Views are used to display the graphical models.

For monitoring the simulation, the model and the data can
be managed and visualized in several different ways.

5 . 3 . The Net Elements

We construct our models using a network, subnets,
entities and resources.

We implicitly fix the topology of the net as well as the
predecessor successor relationships between the net
elements by defining the flow of material between the net
elements.

Entities (or tokens) are objects (materials, clients, orders)
which traverse the net. Each movement of an entity in the
net causes a change of its state. These changes are recorded
in an event list which in turn is executed by the scheduler.
Entities have system specific attributes, e.g., identifica-
tion, source position, destination position, current
position, arrival time, etc., as well as user defined attribu-
tes, e.g., type, occupied resources, expected signal, etc.

Resources are abstract structures with the ability to auto-
nomously decide about their availability. Resources have
the following user definable attributes: capacity, usage
level, maximum and minimum values; as well as system
specific attributes, e.g., which queues contain entities
awaiting allocation, which entities occupy the resource;
location and reserved flag (in case of movable resources).
Allocation and deallocation can be performed using default
mechanisms or user definable subnets.

The blockage of entities in a queue depends on the actual
state of the network.

The net elements (queues, stations) and resources provide
an interface for data collection. We have defined a set of
statistic elements that may be connected to those
interfaces. They range from a simple digital or analog
display up to bar graphs, pie charts, panels to more
sophisticated elements like plots and gant charts.

5 . 4 . The Simulation

The diagram below shows the implicit flow of
information which in return triggers the flow of material.
The standard sequence of events described here is invisible
to the user:

1) Entity e arrives at queue Q1

6

2) Queue Q1 sends a message to station S1 indicating
the arrival of entity e

3) Station S1 gives control to logic element L1

4) Logic element L1 checks the relevant system state and
sends a message back to queue Q1 indicating whether
entity e can be forwarded to station S1 or not

5) Entity e arrives at station S1. Logic element L1
controls the actions to be performed. If the station has a
defined subnet, the entity is forwarded to the first station
of this subnet. After reaching the last station of the
subnet the entity returns to station S1

6) Logic element L1 decides whether entity e should be
disposed of or forwarded to Q2 or Q3.

Q1 S1

L1

Q2

Q3 S3

S2

Resources

Fig. 3: The network with a subnet, showing the flow of material and
information.

6 . Applications:

We carried out the following project with Alcatel-STR, a
large manufacturing enterprise in the field of
telecommunications:
The requirement planning of financial resources has to
consider the time dependent variation of their demand. The
material flow in production is the basic cause of this
variation. By simulating this material flow and analyzing
the related flow of financial means, it is possible to
improve this planning process considerably.

Basic data:

• Data of the Production Planning and Control System
(PPC). This Data includes among others a description of
all products and their components. As this information is
normally very detailed, its aggregation was necessary.

• Distribution, availability, maximum capacity and
minimum threshold values of all kinds of resources.

Parameters:
• Ordering policy of different raw materials

• Delivery program for each product

• Current rate of inflation.

With these parameters, we simulate the different accounts
thus providing insight into the cash flow within the
enterprise. We further investigate the exploitation of the
available resources and its influence on the cash flow.

By making use of the hierarchy concept of our simulator,
we use stepwise refinement to model any necessary details
of the enterprise.

7 . Conclusions

For the simulation of systems in logistics, no existing
simulator could meet our basic requirements sufficiently.
HIDES, our approach for a new general purpose discrete
event simulator in this application field, focuses on:

• a modeling basis with a well-defined syntactical
structure comprising consistent hierarchical model levels,

• a flexibility to integrate any control concept using
Petri nets, state machines or any suitable programming
language,

• a graphical representation of the simulation model by
several different views,

• a highly interactive modeling in a man-machine
dialogue.

An initial version of a prototype of our simulator has
been realized. The first experiences with its application are
promising.

8 . References:

[1] David Parnas: On the Criteria To Be Used in
Decomposing Systems into Modules;
Communications of the ACM, Vol. 15, No. 12;
December 1972.

[2] David Parnas: On a 'Buzzword'; Hierarchical
Structure; IFIP Congress Stockholm; 1974.

[3] Michael Rüger, Ulrich Hoppe, Heiko Kirchner:
Objektorientierte Modellierung von Bausteinen
innerhalb der Simulatorenentwicklungsumgebung
"Create!"; Fraunhofer-Institut für Materialfluss und
Logistik; TU "Otto von Guericke" Magdeburg;
1990.

[4] J. Dähler: Ein Werkzeug für den Entwurf verteilter
Systeme auf der Basis erweiterter Petri-Netze;
Ph.D. thesis ETH Nr. 8770, Swiss Federal Institut
of Technology, Zurich; 1989.

[5] J. Dähler et al.: A Graphical Tool for the Design and
Prototyping of Distributed Systems; Proceedings of
the International Zürich Seminar; 1988.

[6] W. Reisig: Petrinetze; Springer-Verlag; 1982.

[7] R. König, L. Quäck: Petri - Netze in der
Steuerungstechnik; VEB Verlag Technik Berlin;
1988.

[8] J.L. Peterson: Petri Net Theory and the Modeling of
Systems; Prentice-Hall; 1981.

7

[9] Haller, Lanz: Logistikbaustein für den Bereich
Fertigungstechnik; Diploma thesis, Swiss Federal
Institut of Technology, Zurich; 1989.

[10] Garzia M.R.: Discrete Event Simulation
Methodologies and Formalisms; Simulation
Digest, Vol. 21:1, (pp. 3-13); 1990.

[11] Becker B.-D., Dangelmaier A.: Vergleich und
Entwicklungsrichtungen von Werkzeugen zur
diskreten Simulation von Fertigungssystemen;
Informatik Fachberichte 150, Springer-Verlag.

[12] Graber A, Ulrich H: Simulation des Güterverkehrs
für die SBB; Forschritte der Simulatiostechnik
Vieweg-Verlag 1991.

[13] T. Thomasma, Y. Mao, O.M. Ulgen:
Manufacturing Simulation in Smalltalk; 1990.

[14] D.P. Bischak, S.D. Roberts: Object-Oriented
Simulation; Proceedings of the 1991 Winter
Simulation Conference, 194-203.

